Journal of Fluorine Chemistry, 37 (1987) 215-221 215

Received: March 2, 1987;accepted: July 4, 1987

THE CHEMISTRY OF DIACYL PEROXIDES IX.

AN ESR STUDY OF THE REDUCTION OF POLYFLUORODIACYL PEROXIDES BY COPPER (0) IN THE PRESENCE OF 2-NITRO-2-NITROSOPROPANE : THE GENERATION OF POLYFLUOROALKYL NITROALKYL NITROXIDES

Cheng-Xue ZHAO, Gao-Fei CHEN, Yan-Ling QU and Xi-Kui JIANG

Shanghai Institute of Organic Chemistry, Academia Sinica, 345 Lingling Lu, Shanghai (China)

SUMMARY

Polyfluoroalkyl radicals generated by one-electron reduction of polyfluorodiacyl peroxides by copper (0) were trapped by 2-nitro-2-nitrosopropane to yield polyfluoroalkyl nitroalkyl nitroxides, $R \text{ N}(0)$ CMe N ² 2

INTRODUCTION

Some new fluorinated nitroxides, i.e.,polyfluoroalkyl nitroalkyl nitroxides **1** and bis(polyfluoroalky1) nitroxides 2, were generated in the electron-transfer oxidation of the carbanions derived from secondary nitroalkanes by polyfluorodiacyl peroxides 3 in F-113 (CC1₂F-CC1F₂) solution [1]. For characterization of the spectra of nitroxides **1, we** resorted to the method of generating the same species by different reactions. Rather unexpectedly, in experimental attempts to generate 1 by trapping the R . radicals derived from the F thermal decomposition of the peroxides 3 with 2-nitro-2 nitrosopropane 4 in F-113 solutions at room temperature, none of the nitroxides 1 , but well resolved ESR spectra of bis-

0022-1139/87/\$3.50 **CELSERIER SEQUOIA/Printed in The Netherlands**

(polyfluoroalkyllnitroxides 2 were observed [21. Product analysis showed that the main reaction was the rapid oxidation of 4 by 3 to 2,2-dinitropropane(yield, ~ 60 $\frac{\rho}{\Lambda}$). The present work reports successful attempts to make the nitroxides 1 by the copper powder induced reductive decomposition of 3 in the presence of 4 under similar conditions.

RESULTS AND DISCUSSION

A F-113 solution of peroxide 3 (O.lM, 0.2ml) was added into a degassed ESR tube containing reddish-brown activated copper powder and 0.2 ml (O.lM) of a blue solution of 4 in the same solvent. The tube was shaken vigorously for about 2 min. at a constant temperature (ranges from 0 to 20° C). Well resolved ESR spectra of nitroxides 1 were recorded.Some representative spectra of nitroxides ${\bf 1}$ and ${\bf 2}$ plus Cu $^{2+}$ are shown in Fig.1. The ESR parameters of 1 are given in Table 1. The assignment of nitroxides 1 is based on the following evidence: (1) The a values and g factors of the spectra coincide with those reported for nitroxides R_N(O)CMe_NO_ generated in the reactions between 3 and the carbanions derived from nitroalkanes [la]; (2) The dependancy of the a values on the nature of the polyfluoroalkyl groups N
shows a consistent trend. In other words, if the electron attracting power of the R_ groups are CF $\, \zeta \,$ secondary R_ < tertiary RF [3,41 ,thEn the decreasini order of aN F values (CF > C_F > n-C_F and n-C_F ; HCF CF > HCF (CF)
 \geq HCF₂(CF₂) nicely bears out the notion that in addition to geometric factors the polar effect may play a role in affecting the a values 151. N Notably,W-hydrogen atoms in HCF2CF and 2 HCF2(CF2j3 groups significantly reduce their electron-attracting power and hence increase a_ values of the corresponding .
nitroxides**, le** and **lf** . Interestingly, the effect is a long range interaction which is still felt four carbon atoms away from the nitrogen atom in nitroxide If .

Fig. 1. ESR spectra of some representative polyfluoroalkyl 2-nitropropyl nitroxides, RFN(0)CMe **N02,1** $1a$, $1b$, $1c$, $1d$, $1f$, $2b^{r} + cu^{2+2}$

ESR parameters of polyfluoroalkyl nitroalkyl nitroxides **1** generated from the reduction of polyfluorodiacyl peroxides 3 by copper(O) in the presence of 2-nitro-2-nitrosopropane 4 in F-113 solution(Couplings are in Gauss, + 0.05 to 0.10 Gauss)

	R $_{\rm F}$	g	a N	a β F	a r F	t^{\bullet} C
a	CF	2,0065	10.83	10.83		19.0
$\mathbf b$	F	2,0066	10.55	15.75	0.94	19.0
C	5 $n - C$ F	2,0066	10.50	13.77		19.5
d	$n - C$ F	2.0066	10.50	13.96		20.0
e	15 CF HCF.	2,0063	11.00	16.35		20.5
f	(CF) HCF	2,0065	10.67	13.98		5.0
q	(CF) HCF 2 5	2.0065	10.41	14.08		19.5

 $R_N(0)$ CMe₂NO₂ (1)

TABLE 2

Bis(polyfluoroalky1) nitroxides 2 generated from the reduction of 3 (excess) by copper(O) in the presence of 4 in F-113 solution at $20+2^\circ$ C(Couplings are in Gauss, + 0.05 to 0.10 Gauss)

	R \mathbf{F}	g	а N	a/ F	a r F
a	CF	2.0066	9.35	8.35	
b	F	2.0069	8.86	12.13	1.02
C	5 $n - C$ F	2.0070	8.77	9.96	1.22
d	$n-C$ F	2.0070	8.75	9.74	1.17
e	15 HCF CF	2,0067	9.76	14.41	
£	\cdot (CF) 2 HCF	2.0069	8.94	9.91	1.14
g	२ HCF (CF \overline{c} -5 2	2,0069	8.61	9.75	1.16

R $N(O)R$ (2)

When an excess of peroxides 3 was used (molar ratio 3:4:Cu= 2 or 3:1:1), it was found that the signals of 1 diminished quickly and that for nitroxides 2 grew simultaneously and finally became predominant. The ESR parameters thus obtained for 2 are the same as the reported data $[1a, 2, 6]$ and are given in Table 2. Consequently, either **1** or 2 can be selectively generated simply by varying the molar ratio of the reactants.

Predominance in the formation of nitroxides 2 in the presence of excess of 3 might be related to the following possibilities: (A) Formation of unsymmetrical nitroxides **1** would need significant amounts of 4, but excess of the peroxides 3 would oxidize and thus consume 4 , and thus favor the formation of the symmetrical nitroxides 2 through other paths involving R , NO and fluorine-F and nitrogen-containing intermediates [2].) (B) Peroxides 3 would destroy nitroxides 1 by one-electron oxidation. The oxidation products, oxoammonium salts, would decompose subsequently and also end up as nitroxides 2 (Scheme I);

F" 51 i R N-CMe2No + (RFC0212 -RFT-CMe NO , -OCR , F 2 2 2 F RFCOO' 1 3 0. I INo2 - R NR + CH =C + R COOH + co F F 2\ F 2 CH Scheme I ³

(C) Excess of 3 provided a source of $\mathtt{R}__$ radicals through thermal decomposition ($k_1 = 8.5 * 10^{-5}$ s⁻¹, t ^F = 137 min. at 30°C) [7].
The R₋* thus produced would eventually replace the 2-nitropropyl group: in **1** and yield 2 :

$$
1 \xrightarrow{R_{\text{F}}^{\star}} R_{\text{F}}^{N=0} + \text{``CMe}_{2}^{NO}2
$$
\n
$$
R_{\text{F}}^{N=0} + R_{\text{F}} \xrightarrow{P} 2
$$
\n
$$
2 \text{ CMe}_{2}^{NO}2 \xrightarrow{P} Me_{2}^{}(NO_{2})C-CMe_{2}^{}(NO_{2})
$$

The following **observations** made after mixing the reactants in an ESR tube are relevant to the electron-transfer nature of the studied reactions: (A) The **blue** solution turned green immediately: and the strong ESR signal of Cu^{2+} (I=3/2) was observed as a quartet (with splitting constant \sim 78 Gauss) at the central magnetic field, 3094 Gauss; (B) The reddish-brown copper powders disappeared and white solids [Cu(OCOR) by elementary analysis] precipitated;(C) There was an evolution of carbon dioxide during the reaction. These redox reactions would generate R_E. radicals either directly on the surface of the activated copper powders or through the fast fragmentation of the peroxide radical anions, (R CO)', initially formed as shown
in Schome II in Scheme II.

Scheme II

Since activated copper is a **more** powerful reducing agent than the nitroso compound 4 , it would react with the peroxides first thus large amount of R_p radicals would be formed within a short period of time. In other words, copper could protect 4 from being oxidized by 3 and therefore 4 could serve as an efficient spin trap of the R_n radicals:

$$
4 + R \underset{F}{\cdot} \xrightarrow{\qquad \qquad Q^{\cdot}} R \underset{F}{\overset{N-CMe}{\cdot}} NO \underset{2}{\longrightarrow} 1
$$

F

EXPERIMENTAL

Polyfluorodiacyl peroxides [7] and 2-nitro-2-nitrosopropane [21 were prepared as described previously. Powdered copper was activated by vigorous stirring in hydrochloric acid (38%) for 1 hr, washing with acetone (A. R.) and drying under vacuum. The brownish-red activated copper powder was sealed in glass tubes under vacuum. F-113 was purified by conventional methods.

ESR spectra were recorded on a Varian E-112 X-band spectrometer with 100 KH modulation. Temperature variation was achieved with a 2 Varian E-257 variable temperature accessory. Spectral simulations were performed by using Varian E-935 software program, No 929970-11.

REFERENCES

- 1 a. Cheng-Xue Zhao, Xi-Kui Jiang, Gao-Fei Chen, Yan-Ling Qu, Xian-Shan Wang and Jian-Ying Lu, J. Am. Chem. Soc., 108, (1986) 3132. b. Cheng-Xue Zhao, Yan-Ling Qu, Xi-Kui Jiang and Xian-Ming Jin, Acta Chimica Sinica, 43, (1985) 1184.
- 2 Cheng-Xue Zhao, Gao-Fei Chen, Xi-Kui Jiang and Xian-Shan Wang, J. Fluorine Chemistry, 35, (1987), 597.
- 3 C.-Y. Chen, H.-K. Jiang, X.-K. Jiang, B.-Q. Chen and M.-L. Liang Sci. Sin. (Engl. edn.), 15, (1966) 498.
- 4 W. A. Sheppard, J. Am. Chem. Soc., 87, (1965) 2410.
- 5 C. Chatgilialoglu, V. Walatesta, and K. U. Ingold, J. Phys. Chem., 84, (1980) 3597.
- 6 **Cheng-Xue** Zhao, Gao-Fei Chen, Xi-Kui Jiang, and Xian-Shan Wang, J. Chem. Sot., Chem. Commun., (1986) 1362.
- 7 Cheng-Xue Zhao, Ren-Mo Zhou, He-Qi Pan, Xiang-Shan Jin, Yan-ling Qu, Cheng-Jiu Wu and Xi-Kui Jiang, J. Org Chem., =,(1982) 2009.